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Many casinos routinely use mechanical card shuffling machines.
We were asked to evaluate a new product, a shelf shuffler. This leads
to new probability, new combinatorics and to some practical advice
which was adopted by the manufacturer. The interplay between the-
ory, computing, and real-world application is developed.

1. Introduction. We were contacted by a manufacturer of casino equip-
ment to evaluate a new design for a casino card-shuffling machine. The
machine, already built, was a sophisticated “shelf shuffler” consisting of an
opaque box containing ten shelves. A deck of cards is dropped into the top
of the box. An internal elevator moves the deck up and down within the box.
Cards are sequentially dealt from the bottom of the deck onto the shelves;
shelves are chosen uniformly at random at the command of a random num-
ber generator. Each card is randomly placed above or below previous cards
on the shelf with probability 1/2. At the end, each shelf contains about 1/10
of the deck. The ten piles are now assembled into one pile, in random order.
The manufacturer wanted to know if one pass through the machine would
yield a well-shuffled deck.

Testing for randomness is a basic task of statistics. A standard approach
is to design some ad hoc tests such as: Where do the original top and bottom
cards wind up? What is the distribution of cards that started out together?
What is the distribution, after one shuffle, of the relative order of groups
of consecutive cards? Such tests had been carried out by the engineers who
designed the machine, and seemed satisfactory.
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2 P. DIACONIS, J. FULMAN AND S. HOLMES

We find closed-form expressions for the probability of being at a given
permutation after the shuffle. This gives exact expressions for various global
distances to uniformity, for example, total variation. These suggest that the
machine has flaws. The engineers (and their bosses) needed further convinc-
ing; using our theory, we were able to show that a knowledgeable player
could guess about 9 1/2 cards correctly in a single run through a 52-card
deck. For a well-shuffled deck, the optimal strategy gets about 4 1/2 cards
correct. This data did convince the company. The theory also suggested a
useful remedy. Journalist accounts of our shuffling adventures can be found
in Klarreich (2002, 2003), Mackenzie (2002).

Section 2 gives background on casino shufflers, needed probability and
the literature of shuffling. Section 3 gives an analysis of a single shuffle; we
give a closed formula for the chance that a deck of n cards passed through a
machine with m shelves is in final order w. This is used to compute several
classical distances to randomness. In particular it is shown that, for n cards,
the l∞ distance is asymptotic to e1/12c

2 − 1 if the number of shelves m =
cn3/2 and n is large. The combinatorics of shelf shufflers turns out to have
connections to the “peak algebra” of algebraic combinatorics. This allows
nice formulas for the distribution of several classical test statistics: the cycle
structure (e.g., the number of fixed points), the descent structure and the
length of the longest increasing subsequence.

Section 4 develops tools for analyzing repeated shelf shuffling. Section 5
develops our “how many can be correctly guessed” tests. This section also
contains our final conclusions.

2. Background. This section gives background and a literature review.
Section 2.1 treats shuffling machines; Section 2.2 gives probability back-
ground; Section 2.3 gives an overview of related literature and results on the
mathematics of shuffling cards.

2.1. Card shuffling machines. Casinos worldwide routinely employ me-
chanical card-shuffling machines for games such as blackjack and poker. For
example, for a single deck game, two decks are used. While the dealer is
using the first deck in the usual way, the shuffling machine mixes the second
deck. When the first deck is used up (or perhaps half-used), the second deck
is brought into play and the first deck is inserted into the machine. Two-,
four-, and six-deck machines of various designs are also in active use.

The primary rationale seems to be that dealer shuffling takes time and
use of a machine results in approximately 20% more hands per hour. The
machines may also limit dealer cheating.

The machines in use are sophisticated, precision devices, rented to the
casino (with service contracts) for approximately $500 per month per ma-
chine. One company told us they had about 8000 such machines in active
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use; this amounts to millions of dollars per year. The companies involved
are substantial businesses, listed on the New York Stock Exchange.

One widely used machine simulates an ordinary riffle shuffle by pushing
two halves of a single deck together using mechanical pressure to make the
halves interlace. The randomness comes from slight physical differences in
alignment and pressure. In contrast, the shelf shufflers we analyze here use
computer-generated pseudo-random numbers as a source of their random-
ness.

The pressure shufflers require multiple passes (perhaps seven to ten) to
adequately mix 52 cards. Our manufacturer was keen to have a single pass
through suffice.

2.2. Probability background. Let Sn denote the group of permutations
of n objects. Let U(σ) = 1/n! denote the uniform distribution on Sn. If P
is a probability on Sn, the total variation, separation, and l∞ distances to
uniformity are

‖P −U‖TV =
1

2

∑

w

|P (w)−U(w)|= max
A⊆Sn

|P (A)−U(A)|

=
1

2
max

‖f‖∞≤1
|P (f)−U(f)|,(2.1)

sep(P ) = max
w

(

1− P (w)

U(w)

)

, ‖P −U‖∞ =max
w

∣

∣

∣

∣

1− P (w)

U(w)

∣

∣

∣

∣

.

Note that ‖P −U‖TV ≤ sep(P )≤ ‖P −U‖∞. The first two distances are less
than 1; the ‖ · ‖∞ norm can be as large as n!− 1.

If one of these distances is suitably small, then many test statistics eval-
uate to approximately the same thing under P and U . This gives an alter-
native to ad hoc tests. The methods developed below allow exact evaluation
of these and many further distances (e.g., chi-square or entropy).

Repeated shuffling is modeled by convolution,

P ∗ P (w) =
∑

v

P (v)P (wv−1), P ∗k(w) = P ∗ P ∗(k−1)(w).

All of the shelf shufflers generate ergodic Markov chains (even if only one
shelf is involved), and so P ∗k(w)→ U(w) as k→∞. One question of interest
is the quantitative measurement of this convergence using one of the metrics
above.

2.3. Previous work on shuffling.

Early work. The careful analysis of repeated shuffles of a deck of cards
has challenged probabilists for over a century. The first efforts were made by
Hadamard (1906) in his review of Gibbs book on statistical mechanics. Later,
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Poincaré (1912) studied the problem. These great mathematicians proved
that in principle repeated shuffling would mix cards at an exponential rate
but gave no examples or quantitative methods to get useful numbers in
practical problems.

Borel and Chéron (1955) studied riffle shuffling and concluded heuristi-
cally that about seven shuffles would be required to mix 52 cards. Emile
Borel also reported joint work with Paul Levy, one of the great probabilists
of the twentieth century; they posed some problems but were unable to make
real progress.

Isolated but serious work on shuffling was reported in a 1955 Bell Lab-
oratories report by Edgar Gilbert. He used information theory to attack
the problems and gave some tools for riffle shuffling developed jointly with
Claude Shannon.

They proposed what has come to be called the Gilbert–Shannon–Reeds
model for riffle shuffling; this presaged much later work. Thorp (1973) pro-
posed a less realistic model and showed how poor shuffling could be exploited
in casino games. Thorp’s model is analyzed in Morris (2009). Epstein (1977)
reports practical studies of how casino dealers shuffle with data gathered
with a very precise microphone! The upshot of this work was a well-posed
mathematics problem and some heuristics; further early history appears in
Chapter 4 of Diaconis (1988).

The modern era. The modern era in quantitative analysis of shuffling
begins with papers of Diaconis and Shahshahani (1981) and Aldous (1983).
They introduced rigorous methods, Fourier analysis on groups and coupling.
These gave sharp upper and lower bounds, suitably close, for real problems.
In particular, Aldous sketched out a proof that 3

2 log2 n riffle shuffles mixed
n cards. A more careful argument for riffle shuffling was presented by Aldous
and Diaconis (1986). This introduced “strong stationary times,” a power-
ful method of proof which has seen wide application. It is applied here in
Section 4.

A definitive analysis of riffle shuffling was finally carried out in Bayer and
Diaconis (1992) and Diaconis, McGrath and Pitman (1995). They were able
to derive simple closed-form expressions for all quantities involved and do
exact computations for n= 52 (or 32 or 104 or . . .). This results in the “seven
shuffles theorem” explained below. A clear elementary account of these ideas
is in Mann (1994, 1995) reprinted in Grinstead and Snell (1997). See Ethier
(2010) for an informative textbook account.

The successful analysis of shuffling led to a host of developments, the
techniques refined and extended. For example, it is natural to want not only
the order of the cards, but also the “up-down pattern” of one-way backs to
be randomized. Highlights include work of Bidigare, Hanlon and Rockmore
(1999) and Brown and Diaconis (1998) who gave a geometric interpretation
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of shuffling which had many extensions to which the same analysis applied.
Lalley (1996, 1999) studied less random methods of riffle shuffling. Fulman
(2000a, 2000b, 2001) showed that interspersing cuts does not materially
effect things and gave high level explanations for miraculous accidents con-
necting shuffling and Lie theory. The work is active and ongoing. Recent
surveys are given by Diaconis (1996, 2003), Fulman (1998), Stark, Ganesh
and O’Connell (2002).

In recent work, Diaconis, McGrath and Pitman (1995), Conger and Vis-
wanath (2006) and Assaf, Diaconis and Soundararajan (2011) have studied
the number of shuffles required to have selected features randomized (e.g.,
the original top card, or the values but not the suits). Here, fewer shuffles
suffice. Conger and Howald (2010) shows that the way the cards are dealt
out after shuffling affects things. The mathematics of shuffling is closely
connected to modern algebraic combinatorics through quasi-symmetric func-
tions [Stanley (2001)]. The descent theory underlying shuffling makes equiv-
alent appearances in the basic task of carries when adding integers [Diaconis
and Fulman (2009a, 2009b, 2012)].

3. Analysis of one pass through a shelf shuffler. This section gives a
fairly complete analysis of a single pass through a shelf shuffler. Section 3.1
gives several equivalent descriptions of the shuffle. In Section 3.2, a closed-
form formula for the chance of any permutation w is given. This in turn
depends only on the number of “valleys” in w. The number of permutations
with j valleys is easily calculated, and so exact computations for any of
the distances above are available. Section 3.3 uses the exact formulas to get
asymptotic rates of convergence for l∞ and separation distances. Section 3.4
gives the distribution of such permutations by cycle type. Section 3.5 gives
the distribution of the “shape” of such a permutation under the Robinson–
Schensted–Knuth map. Section 3.6 gives the distribution of the number of
descents. We find it surprising that a real-world applied problem makes novel
contact with elegant combinatorics. In Section 4, iterations of a shelf shuffler
are shown to be equivalent to shelf shuffling with more shelves. Thus all of
the formulas of this section apply.

3.1. Alternative descriptions. Consider two basic shelf shufflers: for the
first, a deck of n cards is sequentially distributed on one of m shelves. (Here,
n = 52,m = 10, are possible choices.) Each time, the cards are taken from
the bottom of the deck, a shelf is chosen at random from one to m, and the
bottom card is placed on top of any previous cards on the shelf. At the end,
the packets on the shelves are unloaded into a final deck of n. This may be
done in order or at random; it turns out not to matter. Bayer and Diaconis
(1992) called this an inverse m-shuffle.

The second shuffling scheme, that is the main object of the present study,
is based on m shelves. At each stage that a card is placed on a shelf, the
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choice of whether to put it on the top or the bottom of the existing pile
on that shelf is made at random (1/2 each side). This will be called a shelf
shuffle. There are several equivalent descriptions of shelf shuffles:

Description 1 (Shelf shuffles). A deck of cards is initially in order
1,2,3, . . . , n. Label the back of each card with n random numbers chosen at
random between one and 2m. Remove all cards labeled 1 and place them on
top, keeping them in the same relative order. Then remove all cards labeled
2 and place them under the cards labeled 1, reversing their relative order.
This continues with the cards labeled 3, labeled 4, and so on, reversing the
order in each even labeled packet. If at any stage there are no cards with a
given label, this empty packet still counts in the alternating pattern.

For example, a twelve-card deck with 2m= 4,

Label 2 1 1 4 3 3 1 2 4 3 4 1
Card 1 2 3 4 5 6 7 8 9 10 11 12

is reordered as

2 3 7 12 8 1 5 6 10 11 9 4.

Description 2 (Inverse shelf shuffles). Cut a deck of n cards into 2m
piles according to a multinomial distribution; thus the number of cards cut
off in pile i has the same distribution as the number of balls in the ith
box if n balls are dropped randomly into 2m boxes. Reverse the order of
the even-numbered packets. Finally, riffle shuffle the 2m packets together by
the Gilbert–Shannon–Reeds (GSR) distribution Bayer and Diaconis (1992)
dropping each card sequentially with probability proportional to packet size.
This makes all possible interleavings equally likely.

Description 3 (Geometric description). Consider the function fm(x)
from [0,1] to [0,1] which has “tents,” each of slope ±2m centered at 1

2m , 3
2m ,

5
2m , . . . , 2m−1

2m . Figure 1 illustrates an example with m= 2. Place n labeled

Fig. 1. Two shelves in shelf shuffle.
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points uniformly at random into the unit interval. Label them, from left to
right, x1, x2, . . . , xn. Applying fm gives yi = fm(xi). This gives the permu-
tation

1 2 · · · n
π1 π2 · · · πn

with π1 the relative position from the bottom of y1, . . . , πi the relative po-
sition from the bottom of yi among the other yj . This permutation has the
distribution of an inverse shelf shuffle. It is important to note that the natu-
ral distances to uniformity (total variation, separation, l∞) are the same for
inverse shuffles and forward shuffles. In Section 4, this description is used
to show that repeated shelf shuffling results in a shelf shuffle with more
shelves.

3.2. Formula for the chance of a permutation produced by a shelf shuffler.
To describe the main result, we call i a valley of the permutation w ∈ Sn

if 1< i < n and w(i− 1)>w(i) <w(i+ 1). Thus w = 5136724 has two val-
leys. The number of valleys is classically used as a test of randomness for
time series. See Warren and Seneta (1996) and their references. If v(n,k) de-
notes the number of permutations on n symbols with k valleys, then Warren
and Seneta (1996) v(1,0) = 1, v(n,k) = (2k + 2)v(n − 1, k) + (n− 2k)v(n −
1, k − 1). So v(n,k) is easy to compute for numbers of practical interest.
Asymptotics are in Warren and Seneta (1996) which also shows the close
connections between valleys and descents.

Theorem 3.1. The chance that a shelf shuffler with m shelves and n
cards outputs a permutation w is

4v(w)+1

2(2m)n

m−1
∑

a=0

(

n+m− a− 1
n

)(

n− 1− 2v(w)
a− v(w)

)

,

where v(w) is the number of valleys of w. This can be seen to be the coeffi-
cient of tm in

1

2(2m)n
(1 + t)n+1

(1− t)n+1

(

4t

(1 + t)2

)v(w)+1

.

Example. Suppose that m = 1. Then the theorem yields the uniform
distribution on the 2n−1 permutations with no valleys; a permutation with
one or more valleys occurs with probability 0. Permutations with no val-
leys are also sometimes called unimodal permutations. These arise in social
choice theory through Coombs’s “unfolding” hypothesis Diaconis (1988),
Chapter 6. They also appear in dynamical systems and magic tricks see
Diaconis and Graham (2012), Chapter 5.
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Table 1

Distances for various numbers of shelves m

m 10 15 20 25 30 35 50 100 150 200 250 300

‖Pm −U‖TV 1 0.943 0.720 0.544 0.391 0.299 0.159 0.041 0.018 0.010 0.007 0.005

sep(Pm) 1 1 1 1 1 0.996 0.910 0.431 0.219 0.130 0.085 0.060

‖Pm −U‖∞ ∞ ∞ ∞ 45,118 3961 716 39 1.9 0.615 0.313 0.192 0.130

Remark. By considering the cases m≥ n and n≥m we see that, in the
formula of Theorem 3.1, the range of summation can be taken up to n− 1
instead of m− 1. This will be useful later.

Theorem 3.1 makes it easy to compute the distance to stationarity for
any of the metrics in Section 2.2. Indeed, the separation and l∞ distance is
attained at either permutations with a maximum number of valleys (when
n= 52, this maximum is 25) or for permutations with 0 valleys. For the total
variation distance, with Pm(v) denoting the probability in Theorem 3.1,

‖Pm −U‖TV =
1

2

⌊(n−1)/2⌋
∑

a=0

v(n,a)

∣

∣

∣

∣

Pm(a)− 1

n!

∣

∣

∣

∣

.

Table 1 gives these distances when n= 52 for various numbers of shelvesm.
Larger values ofm are of interest because of the convolution results explained
in Section 4. These numbers show that ten shelves are woefully insufficient.
Indeed, 50 shelves are hardly sufficient.

To prove Theorem 3.1, we will relate it to the following 2m-shuffle on the
hyperoctahedral group Bn: cut the deck multinomially into 2m piles. Then
flip over the odd numbered stacks, and riffle the piles together, by dropping
one card at a time from one of the stacks (at each stage with probability
proportional to stack size). When m = 1 this shuffle was studied in Bayer
and Diaconis (1992), and for larger m it was studied in Fulman (2001).

It will be helpful to have a description of the inverse of this 2m-shuffle. To
each of the numbers {1, . . . , n} is assigned independently and uniformly at
random one of −1,1,−2,2, . . . ,−m,m. Then a signed permutation is formed
by starting with numbers mapped to −1 (in decreasing order and with neg-
ative signs), continuing with the numbers mapped to 1 (in increasing order
and with positive signs), then continuing to the numbers mapped to −2
(in decreasing order and with negative signs), and so on. For example the
assignment

{1,3,8} 7→ −1, {5} 7→ 1, {2,7} 7→ 2,
(∗)

{6} 7→ −3, {4} 7→ 3
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leads to the signed permutation

−8 −3 −1 5 2 7 −6 4 .(∗∗)

The proof of Theorem 3.1 depends on an interesting relation with shuffles
for signed permutations (hyperoctahedral group). This is given next followed
by the proof of Theorem 3.1.

Theorem 3.2 gives a formula for the probability for w after a hyperocta-
hedral 2m-shuffle, when one forgets signs. Here p(w) is the number of peaks
of w, where i is said to be a peak of w if 1< i < n and w(i− 1) < w(i) >
w(i + 1). Also Λ(w) denotes the peak set of w and D(w) denotes the de-
scent set of w [i.e., the set of points i such that w(i)>w(i+1)]. Finally, let
[n] = {1, . . . , n}.

Theorem 3.2. The chance of a permutation w obtained by performing
a 2m shuffle on the hyperoctahedral group and then forgetting signs is

4p(w
−1)+1

2(2m)n

m−1
∑

a=0

(

n+m− a− 1
n

)(

n− 1− 2p(w−1)
a− p(w−1)

)

,

where p(w−1) is the number of peaks of w−1.

Proof. Let P ′(m) denote the set of nonzero integers of absolute value
at most m, totally ordered so that

−1≺ 1≺−2≺ 2≺ · · · ≺ −m≺m.

Then given a permutation w = (w1, . . . ,wn), page 768 of Stembridge (1997)
defines a quantity ∆(w). (Stembridge calls it ∆(w,γ), but throughout we
always choose γ to be the identity map on [n], and so suppress the symbol
γ whenever he uses it.) By definition, ∆(w) enumerates the number of maps
f : [n] 7→ P ′(m) such that:

• f(w1)� · · · � f(wn);
• f(wi) = f(wi+1)> 0⇒ i /∈D(w);
• f(wi) = f(wi+1)< 0⇒ i ∈D(w).

We claim that the number of maps f : [n] 7→ P ′(m) with the above three
properties is equal to (2m)n multiplied by the chance that a hyperoctahedral
2m-shuffle results in the permutation w−1. This is most clearly explained
continuing example (∗), (∗∗) above let w,f be

w = 8 3 1 5 2 7 6 4,
f =−1 −1 −1 1 2 2 −3 3.

Here, f is monotone read left to right, f(8) = f(3) = f(1) =−1 corresponds
to the descents in the first two positions and f(2) = f(7) = 2 corresponds to
the ascent. This f arises from the description of the inverse hyperoctahedral
2m-shuffle in (∗), (∗∗) above, the assignment yields w. This proves the claim.
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Let Λ(w) denote the set of peaks of w. From Proposition 3.5 of Stembridge
(1997),

∆(w) = 2p(w)+1
∑

E⊆[n−1] : Λ(w)⊆E△(E+1)

LE.

Here E +1 means the elements of E with one added to each,

LE =
∑

1≤i1≤···≤in≤m
k∈E⇒ik<ik+1

1.

Here LE is the number of ordered n-tuples (i1, i2, . . . , in) of integers between
1 and m which are nondecreasing, and strictly increasing at positions k in E.
△ denotes symmetric difference, that is, A△B = (A−B)∪ (B−A). Now a

simple combinatorial argument shows that LE = (n+m−|E|−1
n ). Indeed, LE

is equal to the number of integral i1, . . . , in with 1≤ i1 ≤ · · · ≤ in ≤m− |E|,
which by a “stars and bars” argument is (n+m−|E|−1

n ). Thus

∆(w) = 2p(w)+1
∑

E⊆[n−1] : Λ(w)⊆E△(E+1)

(

n+m− |E| − 1
n

)

.

Now let us count the number of E of size a appearing in this sum. For each
j ∈ Λ(w), exactly one of j or j − 1 must belong to E, and the remaining
n− 1− 2p(w) elements of [n− 1] can be independently and arbitrarily in-
cluded in E. Thus the number of sets E of size a appearing in the sum is

2p(w)(n−1−2p(w)
a−p(w)

). Hence

∆(w) =
4p(w)+1

2

n−1
∑

a=0

(

n+m− a− 1
n

)(

n− 1− 2p(w)
a− p(w)

)

,

which completes the proof. �

Proof of Theorem 3.1. To deduce Theorem 3.1 from Theorem 3.2,
we see that a shelf shuffle with m shelves is equivalent to taking w′ to be
the inverse of a permutation after a hyperoctahedral 2m-shuffle (forgetting
about signs), then taking a permutation w defined by w(i) = n−w′(i) + 1.
Thus the shelf shuffle formula is obtained from the hyperoctahedral 2m-
shuffle formula by replacing peaks by valleys. �

Remarks.

• The paper Fulman (2001) gives an explicit formula for the chance of a
signed permutation after a 2m-shuffle on Bn in terms of cyclic descents.
Namely it shows this probability to be

(m+n−cd(w−1)
n )

(2m)n
,
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where cd(w) is the number of cyclic descents of w, defined as follows:
Ordering the integers 1< 2< 3< · · ·< · · ·<−3<−2<−1:
− w has a cyclic descent at position i for 1≤ i≤ n− 1 if w(i)>w(i+1).
− w has a cyclic descent at position n if w(n)< 0.
− w has a cyclic descent at position 1 if w(1)> 0.
For example the permutation 3 1 − 2 4 5 has two cyclic descents at
position 1 and a cyclic descent at position 3, so cd(w) = 3.

This allows one to study aspects of shelf shufflers by lifting the problem
to Bn, using cyclic descents (where calculations are often easier), then
forgetting about signs. This idea was used in Fulman (2001) to study the
cycle structure of unimodal permutations, and in Aguiar, Bergeron and
Nyman (2004) to study peak algebras of types B and D.

The idea of lifting the problem to type Bn leads to a total variation
upper bound. Indeed, from the proof of Theorem 3.1 the total variation
distance after a shelf-shuffler with m shelves to uniform is equal to the
total variation distance of a hyperoctahedral 2m shuffle to uniform, after
one forgets about signs. Now from Bayer and Diaconis (1992) or Fulman
(2001), the total variation distance of a hyperoctahedral 2m shuffle to
uniform, when one does not forget about signs, is equal to the total vari-
ation distance of an ordinary m riffle shuffle to uniform on the symmetric
group—a quantity thoroughly studied in Bayer and Diaconis (1992). Thus
the total variation distance after a shelf-shuffler with m shelves to uniform
is at most the total variation distance of an ordinary m riffle shuffle to
uniform on the symmetric group.

• The appearance of peaks in the study of shelf shufflers is interesting, as
peak algebras have appeared in various parts of mathematics. Nyman
(2003) proves that the peak algebra is a subalgebra of the symmetric
group algebra, and connections with geometry of polytopes can be found
in Aguiar, Bergeron and Sottile (2006) and Billera, Hsiao and van Willi-
genburg (2003). There are also close connections with the theory of P -
partitions [Petersen (2005, 2007), Stembridge (1997)].

The following corollary shows that for a shelf shuffler of n cards with m
shelves, the chance of a permutation w with v valleys is monotone decreasing
in v. Thus, the identity (or any other unimodal permutation) is most likely
and an alternating permutation. . . (down, up, down, up, . . .) is least likely.
From Theorem 3.1, the chance of a fixed permutation with v valleys is

P (v) =
4v+1

2(2m)n

n−1
∑

a=0

(

n+m− 1− a
n

)(

n− 1− 2v
a− v

)

.(3.1)

Corollary 3.3. For P (v) defined at (3.1), P (v) ≥ P (v + 1),0 ≤ v ≤
(n− 1)/2.
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Proof. Canceling common terms, and setting a − v = j (so a = j +

v) in (3.1), we have 2(2m)n

4v+1 P (v) =
∑n−1−2v

j=0 f(j + v)(n−1−2v
j ) = 2n−1−2v ×

E(f(Sn−1−2v + v)) with f(a) = (n+m−1−a
n ) and Sn−1−2v distributed as bi-

nomial (n− 1− 2v, 12). The proposed inequality is equivalent to

E(f(Sn−1−2v + v))≥E(f(Sn−1−2v−2 + v+1)).(3.2)

To prove this, represent Sn−1−2v = Sn−1−2v−2+Y1+Y2, with Yi independent
taking values in {0,1}, with probability 1/2. Then (3.2) is equivalent to

∑

j

[

1

4
f(j + v) +

1

2
f(j + v+1) +

1

4
f(j + v+2)− f(j + v+1)

]

(3.3)
×P{Sn−1−2v−2 = j} ≥ 0.

Thus if 1
2f(j+ v)+ 1

2f(j+ v+2)≥ f(j+ v+1), for example, f(a) is convex,
we are done. Writing out the expression f(a) + f(a + 2) ≥ 2f(a + 1) and
canceling common terms, it must be shown that

(m+ n− 1− a)(m+ n− 2− a) + (m− 1− a)(m− 2− a)
(3.4)

≥ 2(m+ n− 2− a)(m− 1− a)

for all 0 ≤ a ≤ n − 1. Subtracting the right-hand side from the left, the
coefficients of a2 and a cancel, leaving n(n− 1)≥ 0. �

3.3. Asymptotics for the ‖P −U‖∞ and separation distances. Recall the

distances ‖P −U‖∞ =maxw |1− P (w)
U(w) | and sep(P ) = maxw(1− P (w)

U(w)).

Theorem 3.4. Consider the shelf shuffling measure Pm with n cards
and m shelves. Suppose that m = cn3/2. Then, as n tends to infinity with
0< c <∞ fixed,

‖Pm −U‖∞ ∼ e1/(12c
2) − 1,

sep(Pm)∼ 1− e−1/(24c2).

Remark. We find it surprising that this many shelves are needed. For
example, when n = 52, to make the distance less than 1/100, m

.
= 1085

shelves are required for ‖Pm −U‖∞ and m
.
= 764 are required for sep(Pm).

The order m
.
= n3/2 in Theorem 3.4 can be understood as follows: Bayer and

Diaconis (1992) show that it takes k
.
= 3

2 log2 n riffle shuffles to mix n cards

in total variation. Now k riffle shuffles correspond to 2k = n3/2 shelves. Of
course, the 3

2 in riffle shuffling is the result of a careful computation.

Proof. Using Corollary 3.3, the distance is achieved at the identity
permutation or a permutation with ⌊(n − 1)/2⌋ valleys. For the identity,
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consider n!Pm(id). Using Theorem 3.1,

n!Pm(id) =
2(n!)

(2m)n

n−1
∑

a=0

(

m+ n− a− 1
n

)(

n− 1
a

)

.(3.5)

To bound this sum, observe that (n−1
a )/2n−1 is the binomial probability

density. To keep the bookkeeping simple, assume throughout that n is odd.
The argument for even n is similar.

For a= n−1
2 + j, the local central limit theorem as in Feller [(1968), Chap-

ter VII.2], shows

( n−1
(n−1)/2+j )

2n−1
∼ e−2j2/n

√

πn/2
for j = o(n2/3).(3.6)

In the following, we show further that

n!

mn

(

m+ (n− 1)/2− j
n

)

∼ e−1/(24c2)+j/(c
√
n)

(3.7)
uniformly for j = o(n).

Combining (3.6), (3.7), gives a Riemann sum for the integral

e−1/(24c2)

√

π/2

∫ ∞

−∞
e−2x2+x/c dx= e1/(12c

2),

the claimed result. This part of the argument follows Feller [(1968), Chap-
ter VII.2], and we suppress further details. To complete the argument the
tails of the sum in (3.5) must be bounded.

We first prove (3.7). From the definitions

n!

mn

(

m− j + (n− 1)/2
n

)

=

(n−1)/2
∏

i=−(n−1)/2

(

1− j

m
+

i

m

)

using log(1− x) =−x− x2

2 +O(x3),

(n−1)/2
∑

i=−(n−1)/2

log

(

1− j

m
+

i

m

)

=−
∑

i

(

− j

m
+

i

m

)

− 1

2

∑

i

(

− j

m
+

i

m

)2

+ nO

((

n

m

)3)

(3.8)

=
nj

m
− 1

2

(

nj2

m2
+

1

12

n(n2 − 1)

m2

)

+O

(

1√
n

)

=
j

c
√
n
− j2

2c2n2
− 1

24c2
+O

(

1√
n

)

.
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The error term in (3.8) is uniform in j. For j = o(n), j2/n2 = o(1) and (3.7)
follows.

To bound the tails of the sum, first observe that (3.8) implies that
n!
mn (

m−j+(n−1)/2
n ) = eO(

√
n) for all j. From Bernstein’s inequality, if Xi =±1

with probability 1/2, P (|X1+ · · ·+Xn−1|> a)≤ 2e−a2/(n−1). Using this, the
sum over |j| ≥An3/4 is negligible for A sufficiently large.

The Gaussian approximation to the binomial works for j ≪ n2/3. To
bound the sum for |j| between n2/3 and n3/4, observe from (3.8) that in this

range, n!
mn (

m−j+(n−1)/2
n ) =O(en

1/4
). Then Feller [(1968), page 195] shows

(

n− 1
(n− 1)/2 + j

)

2n−1
∼ 1

√

πn/2
e−(1/2)(j)2/(n/4)−f(j/

√
n/4)

with f(x) =
∑∞

a=3
(1/2)a−1+(−1/2)a−1

a(a−1) ( 1√
n/4

)a−2xa = c1
x4

n + c2
x6

n2 + · · · for ex-
plicit constants c1, c2, . . . . For θ1n

2/3 ≤ |j| ≤ θ2n
3/4, the sum under study is

dominated by A
∑

j≥n2/3 e−Bj1/6 which tends to zero.

The separation distance is achieved at permutations with n−1
2 valleys

(recall we are assuming that n is odd). From (3.1),

1− n!Pm

(

n− 1

2

)

= 1− n!

mn

(

m+ (n− 1)/2
n

)

.

The result now follows from (3.7) with j = 0. �

Remark. A similar argument allows asymptotic evaluation of total vari-
ation. We have not carried out the details.

3.4. Distribution of cycle type. The number of fixed points and the num-
ber of cycles are classic descriptive statistics of a permutation. More gener-
ally, the number of i-cycles for 1≤ i≤ n has been intensively studied [Shepp
and Lloyd (1966), Diaconis, McGrath and Pitman (1995)]. This section in-
vestigates the distribution of cycle type of a permutation w produced from
a shelf shuffler with m shelves and n cards. Similar results for ordinary rif-
fle shuffles appeared in Diaconis, McGrath and Pitman (1995), and closely
related results in the type B case (not in the language of shelf-shuffling)
appear in Fulman (2001, 2002). Recall also that in the case of one shelf, the
shelf shuffler generates one of the 2n−1 unimodal permutations uniformly at
random. The cycle structure of unimodal permutations has been studied in
several papers in the literature: see Fulman (2001, 2002), Thibon (2001) for
algebraic/combinatorial approaches and Gannon (2001), Rogers (1981) for
approaches using dynamical systems.
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For what follows, we define

fi,m =
1

2i

∑

d|i
d odd

µ(d)(2m)i/d,

where µ is the Möbius function of elementary number theory: µ(d) = (−1)k

if d is a square free number with k prime factors, µ(1) = 1 and µ(d) = 0
otherwise.

Theorem 3.5. Let Pm(w) denote the probability that a shelf shuffler
with m shelves produces a permutation w. Let Ni(w) denote the number of
i-cycles of a permutation w in Sn. Then

1 +
∑

n≥1

un
∑

w∈Sn

Pm(w)
∏

i≥1

x
Ni(w)
i =

∏

i≥1

(

1 + xi(u/2m)i

1− xi(u/2m)i

)fi,m

.(3.9)

Proof. By the proof of Theorem 3.1, a permutation produced by a shelf
shuffler with m shelves is equivalent to forgetting signs after the inverse of a
type B riffle shuffle with 2m piles, then conjugating by the longest element
n,n− 1, . . . ,1. Since a permutation and its inverse have the same cycle type
and conjugation leaves cycle type invariant, the result follows from either
Fulman [(2001), Theorem 7] or Fulman [(2002), Theorem 9] both of which
derived the generating function for cycle type after type B shuffles. �

Theorem 3.5 leads to several corollaries. We say that a random variable
X is binomial (n,p) if P(X = j) = (nj )p

j(1 − p)n−j,0 ≤ j ≤ n, and that X

is negative binomial with parameters (f, p) if P(X = j) = (f+j−1
j )pj(1 −

p)f ,0 ≤ j < ∞. As usual, the products in the generating function on the
right of (3.9) correspond to the convolution of the corresponding measures.

Corollary 3.6. Let Ni(w) be the number of i-cycles of a permuta-
tion w.

(1) Fix u such that 0<u< 1. Then choose a random number N of cards
so that P(N = n) = (1 − u)un. Let w be produced by a shelf shuffler with
m shelves and N cards. Then any finite number of the random variables
{Ni} are independent, and Ni is distributed as the convolution of a binomial

(fi,m, (u/2m)i

1+(u/2m)i
) and a negative binomial with parameters (fi,m, (u/2m)i).

(2) Let w be produced by a shelf shuffler with m shelves and n cards.
Then in the n→∞ limit, any finite number of the random variables {Ni}
are independent. The Ni are distributed as the convolution of a binomial
(fi,m, 1

(2m)i+1
) and a negative binomial with parameters (fi,m, (1/2m)i).
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Proof. Setting all xi = 1 in equation (3.9) yields the equation

(1− u)−1 =
∏

i≥1

(

1 + (u/2m)i

1− (u/2m)i

)fi,m

.(3.10)

Taking reciprocals of equation (3.10) and multiplying by equation (3.9) gives
the equality

(1− u) +
∑

n≥1

(1− u)un
∑

w∈Sn

Pm(w)
∏

i≥1

x
ni(w)
i

(3.11)

=
∏

i≥1

(

1 + xi(u/2m)i

1 + (u/2m)i

)fi,m

·
(

1− (u/2m)i

1− xi(u/2m)i

)fi,m

.

This proves part 1 of the theorem, the first term on the right corresponding
to the convolution of binomials, and the second term to the convolution of
negative binomials.

The second part follows from the claim that if a generating function f(u)
has a Taylor series which converges at u= 1, then the n→∞ limit of the
coefficient of un in f(u)/(1− u) is f(1). Indeed, write the Taylor expansion
f(u) =

∑∞
n=0 anu

n and observe that the coefficient of un in f(u)/(1− u) is
∑n

i=0 ai. Now apply the claim to equation (3.11) with all but finitely many
xi equal to 1. �

Remark. For example, when i= 1, fi,m =m; the number of fixed points
are distributed as a sum of binomial (m, 1

2m+1 ) and negative binomial(m, 1
2m ).

Each of these converges to Poisson(1/2) and so the number of fixed points
is approximately Poisson(1). A similar analysis holds for the other cycle
counts. Corollary 3.6 could also be proved by the method of moments, along
the lines of the arguments of Diaconis, McGrath and Pitman (1995) for the
case of ordinary riffle shuffles.

For the next result, recall that the limiting distribution of the large cycles
of a uniformly chosen permutation in Sn has been determined by Gontcharoff
(1942, 1944), Shepp and Lloyd (1966), Vershik and Shmidt (1977, 1978), and
others. For instance the average length of the longest cycle L1 is approxi-
mately 0.63n and L1/n has a known limiting distribution. The next result
shows that even with a fixed number of shelves, the distribution of the large
cycles approaches that of a uniform random permutation, as long as the
number of cards is growing. We omit the proof, which goes exactly along
the lines of the corresponding result for riffle shuffles in Diaconis, McGrath
and Pitman (1995).

Corollary 3.7. Fix k and let L1(w),L2(w), . . . ,Lk(w) be the lengths
of the k longest cycles of w ∈ Sn produced by a shelf shuffler with m shelves.
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Then for m fixed, or growing with n, as n→∞,

|Pm{L1/n≤ t1, . . . ,Lk/n≤ tn} − P∞{L1/n≤ t1, . . . ,Lk/n≤ tn}|→ 0

uniformly in t1, t2, . . . , tk.

As a final corollary, we note that Theorems 3.1 and 3.5 give the following
generating function for the joint distribution of permutations by valleys
and cycle type. Note that this gives the joint generating function for the
distribution of permutations by peaks and cycle type, since conjugating by
the permutation n,n− 1, . . . ,1 preserves the cycle type and swaps valleys
and peaks.

Corollary 3.8. Let v(w) denote the number of valleys of a permuta-
tion w. Then

t

1− t
+
∑

n≥1

un
∑

w∈Sn

1

2

(1 + t)n+1

(1− t)n+1

(

4t

(1 + t)2

)v(w)+1
∏

i≥1

x
Ni(w)
i

=
∑

m≥1

tm
∏

i≥1

(

1 + xiu
i

1− xiui

)fi,m

.

The same result holds with v(w) replaced by p(w), the number of peaks of w.

Remark. There is a large literature on the joint distribution of per-
mutations by cycles and descents [Gessel and Reutenauer (1993), Diaconis,
McGrath and Pitman (1995), Reiner (1993), Fulman (2000b), Blessenohl,
Hohlweg and Schocker (2005), Poirier (1998)] and by cycles and cyclic de-
scents Fulman (2000a, 2001, 2002), but Corollary 3.8 seems to be the first
result on the joint distribution by cycles and peaks.

3.5. Distribution of RSK shape. In this section we obtain the distribu-
tion of the Robinson–Schensted–Knuth (RSK) shape of a permutation w
produced from a shelf shuffler with m shelves and n cards. For background
on the RSK algorithm, see Stanley (1999). The RSK bijection associates to
a permutation w ∈ Sn a pair of standard Young tableaux (P (w),Q(w)) of
the same shape and size n. Q(w) is called the recording tableau of w.

To state our main result, we use a symmetric function Sλ studied in
Stembridge (1997) [a special case of the extended Schur functions in Kerov
and Vershik (1986)]. One definition of the Sλ is as the determinant

Sλ(y) = det(qλi−i+j),

where q−r = 0 for r > 0 and for r ≥ 0, qr is defined by setting
∑

n≥0

qnt
n =

∏

i≥1

1 + yit

1− yit
.

We also let fλ denote the number of standard Young tableaux of shape λ.
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Theorem 3.9. The probability that a shelf shuffler with m shelves and
n cards produces a permutation with recording tableau T is equal to

1

2n
Sλ

(

1

m
, . . . ,

1

m

)

for any T of shape λ, where Sλ has m variables. Thus the probability that
w has RSK shape λ is equal to

fλ
2n

Sλ

(

1

m
, . . . ,

1

m

)

.

Proof. By the proof of Theorem 3.1, a permutation produced by a
shelf shuffler with m shelves is equivalent to forgetting signs after the in-
verse of a type B 2m-shuffle, and then conjugating by the permutation
n,n−1, . . . ,1. Since a permutation and its inverse have the same RSK shape
[Stanley (1999), Section 7.13], and conjugation by n,n− 1, . . . ,1 leaves the
RSK shape unchanged [Stanley (1999), Theorem A1.2.10], the result follows
from Fulman [(2002), Theorem 8], who studied RSK shape after type B riffle
shuffles. �

3.6. Distribution of descents. A permutation w is said to have a descent
at position i (1 ≤ i ≤ n − 1) if w(i) > w(i + 1). We let d(w) denote the
total number of descents of w. For example the permutation 3 1 5 4 2 has
d(w) = 3 and descent set 1,3,4. The purpose of this section is to derive a
generating function for the number of descents in a permutation w produced
by a shelf shuffler with m shelves and n cards. More precisely, we prove the
following result.

Theorem 3.10. Let Pm(w) denote the probability that a shelf shuffler
with m shelves and n cards produces a permutation w. Letting [un]f(u) de-
note the coefficient of un in a power series f(u), one has that

∑

w∈Sn

Pm(w)td(w)+1 =
(1− t)n+1

2n

∑

k≥1

tk[un]
(1 + u/m)km

(1− u/m)km
.(3.12)

The proof uses the result about RSK shape mentioned in Section 3.5, and
symmetric function theory; background on these topics can be found in the
texts by Stanley (1999) and Macdonald (1995), respectively.

Proof. Let w be a permutation produced by a shelf shuffler with m
shelves and n cards. The RSK correspondence associates to w a pair of
standard Young tableaux (P (w),Q(w)) of the same shape. Moreover, there
is a notion of descent set for standard Young tableaux, and by Lemma 7.23.1
of Stanley (1999), the descent set of w is equal to the descent set of Q(w).
Let fλ(r) denote the number of standard Young tableaux of shape λ with r
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descents. Then Theorem 3.9 implies that

P(d(w) = r) =
∑

|λ|=n

fλ(r)

2n
Sλ

(

1

m
, . . . ,

1

m

)

.

By equation (7.96) of Stanley (1999), one has that
∑

r≥0

fλ(r)t
r+1 = (1− t)n+1

∑

k≥1

sλ(1, . . . ,1)t
k,

where in the kth summand, sλ(1, . . . ,1) denotes the Schur function with k
variables specialized to 1. Thus

∑

r≥0

P(d(w) = r) · tr+1

=
∑

r≥0

∑

|λ|=n

fλ(r)

2n
Sλ

(

1

m
, . . . ,

1

m

)

· tr+1

=
(1− t)n+1

2n

∑

k≥1

tk
∑

|λ|=n

Sλ

(

1

m
, . . . ,

1

m

)

sλ(1, . . . ,1)

=
(1− t)n+1

2n

∑

k≥1

tk[un]
∑

n≥0

∑

|λ|=n

Sλ

(

1

m
, . . . ,

1

m

)

sλ(1, . . . ,1) · un.

From Appendix A.4 of Stembridge (1997), if λ ranges over all partitions of
all natural numbers, then

∑

λ

sλ(x)Sλ(y) =
∏

i,j≥1

1 + xiyj
1− xiyj

.

Setting x1 = · · ·= xk = u and y1 = · · ·= ym = 1
m completes the proof of the

theorem. �

For what follows we let An(t) =
∑

w∈Sn
td(w)+1 be the generating function

of elements in Sn by descents. This is known as the Eulerian polynomial,
and from page 245 of Comtet (1974), one has that

An(t) = (1− t)n+1
∑

k≥1

tkkn.(3.13)

This also follows by letting m→∞ in equation (3.12).
The following corollary derives the mean and variance of the number of

descents of a permutation produced by a shelf shuffler.

Corollary 3.11. Let w be a permutation produced by a shelf shuffler
with m shelves and n≥ 2 cards.
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(1) The expected value of d(w) is n−1
2 .

(2) The variance of d(w) is n+1
12 + n−2

6m2 .

Proof. The first step is to expand [un] (1+u/m)km

(1−u/m)km
as a series in k. One

calculates that

[un]
(1 + u/m)km

(1− u/m)km

=
1

mn

∑

a≥0

(

km
a

)(

km+ n− a− 1
n− a

)

=
1

mn

∑

a≥0

[

(km) · · · (km− a+ 1)

a!

]

×
[

(km+ n− a− 1) · · · (km)

(n− a)!

]

=
1

n!

[

2nkn +
2nn(n− 1)(n− 2)

12m2
kn−2 + · · ·

]

,

where the · · · in the last equation denote terms of lower order in k. Thus
Theorem 3.10 gives

∑

w

Pm(w)td(w)+1

=

[

(1− t)n+1

n!

∑

k≥1

tkkn
]

+
n− 2

12m2
(1− t)2

[

(1− t)n−1

(n− 2)!

∑

k≥1

tkkn−2

]

+ (1− t)3C(t),

where C(t) is a polynomial in t. By equation (3.13), it follows that
∑

w

Pm(w)td(w)+1 =
An(t)

n!
+ (1− t)2

n− 2

12m2

An−2(t)

(n− 2)!
+ (1− t)3C(t).

Since the number of descents of a random permutation has mean (n− 1)/2

and variance (n+1)/12 for n≥ 2, it follows that A′
n(1)
n! = (n+1)

2 and also that
A′′

n(1)
n! = (3n2 + n− 2)/12. Thus

∑

w

Pm(w)d(w) =
n− 1

2

and
∑

w

Pm(w)d(w)[d(w) + 1] =
3n2 + n− 2

12
+

n− 2

6m2
,

and the result follows. �
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Fig. 2. Left: m= 4, x=++++; Right: m= 4, x=+−−+.

Remarks.

• Part 1 of Corollary 3.11 can be proved without generating functions simply
by noting that by the way the shelf shuffler works, w and its reversal are
equally likely to be produced.

• Theorem 3.10 has an analog for ordinary riffle shuffles which is useful
in the study of carries in addition. See Diaconis and Fulman (2009a) for
details.

4. Iterated shuffling. This section shows how to analyze repeated shuf-
fles. Section 4.1 shows how to combine shuffles. Section 4.2 gives a clean
bound for the separation distance.

4.1. Combining shuffles. To describe what happens to various combi-
nations of shuffles, we need the notion of a signed m-shuffle. This has the
following geometric description: divide the unit interval into sub-intervals of
length 1

m ; each sub-interval contains the graph of a straight line of slope ±m.
The left-to-right pattern of signs ±s is indicated by a vector x of length m.
Thus if m= 4 and x= ++++, an x-shuffle is generated as shown on the
left side of Figure 2. If m= 4 and x=+−−+, the graph becomes that of
the right-hand side of Figure 2. Call this function fx.

The shuffle proceeds as in the figure with n points dropped at random
into the unit interval, labeled left to right, y1, y2, . . . , yn and then permuted
by fx. In each case there is a simple forward description: the deck is cut into
m piles by a multinomial distribution and piles corresponding to negative
coordinates are reversed. Finally, all packets are shuffled together by the
GSR procedure in which one drops each card sequentially with probability
proportional to packet size. Call the associated measure on permutations Px.

Remark. Thus, ordinary riffle shuffles are ++ shuffles. The shelf shuffle
with 10 shelves is an inverse + − + − · · · + − (length 20) shuffle in this
notation.
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The following theorem reduces repeated shuffles to a single shuffle. To
state it, one piece of notation is needed. Let x = (x1, x2, . . . , xa) and y =
(y1, y2, . . . , yb) be two sequences of ± signs. Define a sequence of length ab as
x ∗ y = yx1 , yx2 , . . . , yxa with (y1, . . . , yb)

1 = (y1, . . . , yb) and (y1, . . . , yb)
−1 =

(−yb,−yb−1, . . . ,−y1). This is an associative product on strings; it is not
commutative. Let Px be the measure induced on Sn (forward shuffles).

Example.

(+++) ∗ (++) = ++++++,

(+−) ∗ (+−) = +−+−,

(+−) ∗ (++−+) = ++−+−+−−.

Theorem 4.1. If x and y are ±1 sequences of length a and b, respec-
tively, then

Px ∗ Py = Px∗y.

Proof. In outline, this follows most easily from the geometric descrip-
tion underlying Figures 1 and 2. If a uniformly chosen point in [0,1] is
expressed base a, the “digits” are uniform and independently distributed in
{0,1, . . . , a − 1}. Because of this, iterating the maps on the same uniform
points gives the convolution. The iterated maps have the claimed pattern of
slopes by a simple geometric argument.

In more detail, consider a ± string x of length m. The function fx sends
[0,1] to itself by mapping η ∈ [ i−1

m , i
m ] to ximη (mod 1). If xi is positive,

all points in [ i−1
m , i

m ] are sent to [0,1] in an order preserving way. If xi is
negative, the order is reversed. In either case, the map fx is m to 1 and
measure preserving on [0,1] (i.e., f−1

x preserves Lebesgue measure). Now
consider fy ◦ fx (apply fx first, then fy), where x is of length m and y is
of length n. The composition sends all elements η ∈ [ i−1

mn ,
i

mn ] to sgn(i) mnη
(mod 1); where sgn(i) is ±1. A simple argument shows sgn(i) is given by
the x ∗ y rule.

There is a subtle point: the convolution Px ∗ Py (first apply Px then in-
dependently Py) involves independent shuffles while fy ◦ fx and fx∗y are
applied to a single random uniform set of points. The induced measures
are the same because the digits of η ∈ [0,1] base m are independent and
uniformly distributed in {0,1, . . . ,m} and fx preserves measure. It follows
that the image of independent uniform points in [0,1] under fx are inde-
pendent and uniform even conditional on the induced permutation which is
determined by how many points fall in each [ i−1

m , i
m ]. �

Corollary 4.2. The convolution of k+− shuffles is a +−+−· · ·+−
(2k terms) shuffle. Further, the convolution of a shelf shuffler with m1 and
then m2 shelves is the same as a shelf shuffler with 2m1m2 shelves.
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4.2. Bounds for separation distance. The following theorem gives a bound
for separation (and so for total variation) for a general Px shuffle on Sn.

Theorem 4.3. For any ±1 sequence x of length a, with Px the associ-
ated measure on Sn, and sep(Px) from (2.1),

sep(Px)≤ 1−
n−1
∏

i=1

(

1− i

a

)

.(4.1)

Proof. It is easiest to argue using shuffles as in Description 1. There,
the backs of cards are labeled, independently and uniformly, with symbols
1,2, . . . , a. For the inverse shuffle, all cards labeled 1 are removed, keeping
them in their same relative order, and placed on top followed by the cards
labeled 2 (placed under the 1s) and so on, with the following proviso: if the
ith coordinate of x is −1, the cards labeled i have their order reversed; so
if they are 1, 5, 17 from top down, they are placed in order 17, 5, 1. All of
this results in a single permutation drawn from Px. Repeated shuffles are
modeled by labeling each card with a vector of symbols. The kth shuffle is
determined by the kth coordinate of this vector. The first time t that the first
k coordinates of those n vectors are all distinct forms a strong stationary
time. See Aldous and Diaconis (1986) or Fulman (1998) for further details.
The usual bound for separation yields

sep(Px)≤ P{all n labels are distinct}.
The bound (4.1) now follows from the classical birthday problem. �

Remarks.

• For a large with respect to n, the right-hand side is well-approximated by
1− e−(n(n−1))/(2a). This is small when n2 ≪ a.

• The theorem gives a clean upper bound on the distance to uniformity. For
example, when n= 52, after 8 ordinary riffle shuffles (so x=++ · · ·++,
length 256), the bound (4.1) is sep(Px)≤ 0.997, in agreement with Table 1
of Assaf, Diaconis and Soundararajan (2011). For the actual shelf shuffle
with x = +− + − · · ·+ − (length 20), the bound gives sep(Px) = 1 but
sep(Px ∗ Px)≤ 0.969 and sep(Px ∗ Px ∗ Px)≤ 0.153.

• The bound in Theorem 4.3 is simple and general. However, it is not sharp
for the original shelf shuffler. The results of Section 3.3 show that m =
cn3/2 shelves suffice to make sep(Pm) small when c is large. Theorem 4.3
shows that m= cn2 steps suffice.

• The upper bound in (4.1) is achieved. If the length a sequence consists
only of + signs, we have the ordinary “riffle shuffle.” Then the formula
in Bayer and Diaconis (1992) for the chance of a permutation after an a
shuffle implies that the separation distance is attained for the permutation
n,n− 1, . . . ,1, and is equal to the right-hand side of (4.1).
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5. Practical tests and conclusions. The engineers and executives who
consulted us found it hard to understand the total variation distance. They
asked for more down-to-earth notions of discrepancy. This section reports
some ad hoc tests which convinced them that the machine had to be used
differently. Section 5.1 describes the number of cards guessed correctly. Sec-
tion 5.2 briefly describes three other tests. Section 5.3 describes conclusions
and recommendations.

5.1. Card guessing with feedback. Suppose, after a shuffle, cards are dealt
face-up, one at a time, onto the table. Before each card is shown, a guess is
made at the value of the card. Let Xi,1≤ i≤ n, be one or zero as the ith
guess is correct and Tn =X1 + · · ·+Xn the total number of correct guesses.
If the cards were perfectly mixed, the chance that X1 = 1 is 1/n, the chance
that X2 = 1 is 1/(n − 1), . . . , that Xi = 1 is 1/(n − i+ 1). Further, the Xi

are independent. Thus elementary arguments give the following.

Proposition 5.1. Under the uniform distribution, the number of cards
guessed correctly Tn satisfies:

• E(Tn) =
1
n + 1

n−1 + · · ·+1∼ logn+ γ +O( 1n) with γ
.
= 0.577 Euler’s con-

stant.
• var(Tn) =

1
n(1− 1

n)+
1

n−1(1− 1
n−1)+ · · ·+ 1

2(1− 1
2)∼ logn+γ− π2

6 +O( 1n).
• Normalized by its mean and variance, Tn has an approximate normal dis-

tribution.

When n = 52, Tn has mean approximately 4.5, standard deviation ap-
proximately

√
2.9 and the number of correct guesses is between 2.7 and 6.3,

70% of the time.
Based on the theory developed in Section 3 we constructed a guessing

strategy—conjectured to be optimal—for use after a shelf shuffle.
Strategy.

• To begin, guess card 1.
• If guess is correct, remove card 1 from the list of available cards. Then

guess card 2, card 3, . . . .
• If guess is incorrect and card i is shown, remove card i from the list of

available cards and guess card i+ 1, card i+2, . . . .
• Continue until a descent is observed (order reversal with the value of the

current card smaller than the value of the previously seen card). Then
change the guessing strategy to guess the next-smallest available card.

• Continue until an ascent is observed, then guess the next-largest available
card, and so on.

A Monte Carlo experiment was run to determine the distribution of Tn for
n= 52 with various values of m (10,000 runs for each value). Table 2 shows
the mean and variance for various numbers of shelves. Thus for the actual
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Table 2

Mean and variance for n= 52 after a shelf shuffle with m shelves under the conjectured
optimal strategy

m 1 2 4 10 20 64

Mean 39 27 17.6 9.3 6.2 4.7
Variance 3.2 5.6 6.0 4.7 3.8 3.1

shuffler, m= 10 gives about 9.3 correct guesses versus 4.5 for a well-shuffled
deck. A closely related study of optimal strategy for the GSR measure (with-
out feedback) is carried out by Ciucu (1998).

5.2. Three other tests. For the shelf shuffler with m shelves, an easy
argument shows that the chance that the original top card is still on top is
at least 1/2m instead of 1/n. When n = 52, this is 1/20 versus 1/52. The
chance that card 2 is on top is approximately 1

2m (1− 1
2m) while the chance

that card 2 is second from the top is roughly 1
(2m)2 . The same probabilities

hold for the bottom cards. While not as striking as the guessing test of
Section 5.1, this still suggests that the machine is “off.”

Fig. 3. 9 spacings from a 10-shelf shuffle; j varies from top left to bottom right, 1≤ j ≤ 9.
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Fig. 4. 9 spacings from a uniform shuffle; j varies from top left to bottom right, 1≤ j ≤ 9.

Our second test supposed that the deck was originally arranged with all
the red cards on top and all the black cards at the bottom. The test statis-
tic is the number of changes of color going through the shuffled deck. Under
uniformity, simulations show this has mean 26 and standard deviation 3.6.
With a 10-shelf machine, simulations showed 17± 1.83, a noticeable devia-
tion. The third test is based on the spacings between cards originally near
the top of the deck. Let wj denote the position of the card originally at po-
sition j from the top. Let Dj = |wj −wj+1|. Figure 3 shows a histogram of
Dj for 1≤ j ≤ 9, from a simulation with n= 52 based on a 10-shelf shuffler.
Figure 4 shows histograms for the same statistics for a well-shuffled deck;
there are striking discrepancies.

5.3. Conclusions and recommendations. The study above shows that a
single iteration of a 10-shelf shuffler is not sufficiently random. The president
of the company responded, “We are not pleased with your conclusions, but
we believe them and that’s what we hired you for.”

We suggested a simple alternative: use the machine twice. This results
in a shuffle equivalent to a 200-shelf machine. Our mathematical analysis
and further tests, not reported here, show that this is adequately random.

Fred
Highlight

Fred
Highlight
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Indeed, Table 1 shows, for total variation, this is equivalent to 8-to-9 ordinary
riffle shuffles.

Acknowledgments. We thank the Editor and two anonymous referees for
their constructive reviews.
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